
TINA Conformance Testing Framework

In response to 
the TINA-CAT RFP on 

TINA Conformance Testing Framework

Final Version

May 2000

GMD FOKUS



2

1 Document Information

Final Version of the TINA Conformance Testing Framework RfP



3

Table of Contents

1 Document Information .................................................................... 2
2 General Description ........................................................................ 4

2.1 Submitters .........................................................................................................4
2.2 Background of the Proposal ............................................................................4

3 Detailed Description ....................................................................... 6
3.1 RP-Facet Specification Template ....................................................................6

3.1.1 RP-Facet Definition ........................................................................ 6
3.1.2 RP-Facet Specification ................................................................. 10

3.1.2.1 Structural Specification Template ...............................................11
3.1.2.2 ODL to ASN.1 Data Mapping ....................................................12
3.1.2.3 Behavioral Specification Template .............................................12

3.2 Test Method ....................................................................................................14
3.2.1 Test Specification ......................................................................... 15
3.2.2 Test Campaign Derivation ............................................................ 16

3.3 Test Documentation .......................................................................................18
3.4 Testing in Practice ..........................................................................................19
3.5 Demonstrate Usability ....................................................................................19
3.6 Accreditation of Testing Vendors .................................................................25

4 Compliance to Evaluation Criteria ............................................... 26
5 Related Standards and Documents ............................................... 27
6 Glossary ........................................................................................ 29
Annex A: The Object Definition Language ODL ................................. 30
Annex B: Abstract Syntax Notation One ASN.1 .................................. 31
Annex C: Message Sequence Charts MSC ........................................... 32
Annex D: Tree and Tabular Combined Notation TTCN ....................... 33



2 General Description

2.1 Submitters

GMD FOKUS

Competence Center TIP

Kaiserin-Augusta-Allee 31

D-10589 Berlin, Germany

Contact:

Dr. Ina Schieferdecker Mang Li

Tel: +49 30 3463 7241 Tel: +49 30 3463 7101

Fax: +49 30 3463 8241 Fax: +49 30 3463 8101

2.2 Background of the Proposal

TINA combines modern methodologies and techniques, such RM-ODP [11] and CORBA [15] to

support the development of large-scale telecommunication systems. TINA provides an open architecture

for a multi-vendor environment. The TINA architecture addresses a wide range of issues and provides a

complex set of concepts and principles. It has been partitioned into several models, subsystems,

components, etc. in order to handle the complexity. An essential partitioning concept is that of reference

points (RPs). 

Reference points consist of a set of interfaces together with potential interactions at these interfaces.

Reference point specifications define conformance requirements for a relationship between or within

administrative domains of distributed systems. The TINA reference point concept follows the RM-ODP

conformance assessment principles [11]. An example for an inter-domain reference point is the Retailer

Reference Point [23]. 

Key issues for multi-vendor systems is interoperability. Reference points as a collection of conformance

requirements are the basis to increase the likelihood for interoperability. Conformance testing is an

effective and efficient means to validate the overall functionality of a multi-vendor system. It is a well-

established alternative to the otherwise needed many-to-many test setups for individual components and/

or sub-systems to ensure their interoperability.



5

The Conformance Testing Methodology and Framework (CTMF) [8] is a well accepted technology in

the area of protocol testing. CTMF defines test architectures and the test notation TTCN (Tree and

Tabular Combined Notation) for the evaluation of capability and behavioral conformance of protocol

implementations. CTMF allows the modelling and specification of both centralized and distributed test

systems. It has been used for ISDN, ATM and Internet protocols. A recent work shows also the usability

of CTMF for object-oriented systems [5].

Reference points provide a simple straight-forward means to express the TINA architecture in terms of

objective requirements for conformance. However, current defined TINA reference points tend to be too

large. They are inadequately structured and do not allow incremental specification, implementation, and

testing. 

Therefore, the design for testability of reference points is a requirement to enable and further facilitate

the testing process for distributed systems. This motivates the TINA Conformance Testing Framework

Request for Proposal (RfP) [25]. This RfP introduces the facet concept that is to support more effective

and efficient conformance testing of TINA products. 

As an initial submission to the RfP, this document elaborates the definition and specification of reference

point facets (RP-facet)1, as well as RP-facet based testing.

Reference points can be composed from RP-facets and/or segmented into RP-facets. Each of these RP-

facets (or subtopics) has it's own concepts, partitioning, information model, and other details.

Conformance can be tested separately for each of these RP-facets. Thus, a system may be tested at

multiple levels with respect to various RP-facets representing different aspects of a reference point. This

kind of testing is consistent with the current usage of TINA specifications, and allows a vendor to

implement limited roles in the business of service provisioning. 

1. The term facet is used in the OMG CORBA Component Model (CCM). In order to avoid misunderstandings, RP-facet is used instead.



6

3 Detailed Description

3.1 RP-Facet Specification Template

3.1.1 RP-Facet Definition

RP-facets define refinements of TINA reference points. A RP-facet is to enable interaction among

components with separable concerns. It is a meaningful and self-standing portion of functionality. A RP-

facet is a minimal set of conformance criteria, a TINA testing can be associated with. RP-facets are the

basis for determining test purposes and generating test cases for TINA reference points.

Each reference point should be composed of one or more RP-facets. Typically, there will be a "core"

facet that provides some minimum set of functionality. Additional interfaces and interactions can be

specified to provide additional functionality. A RP-facet depends on the presence of the “core” facet and

may depend on the presence of other RP-facets.

The RP-facet concepts is to facilitate conformance testing, which is in particular based on the

observation of system behavior. Thus, a purpose-oriented functional description in terms of use

scenarios is proposed. The functionality of a RP-facet is specified by the signature and behavior of

operations2. Operations provide services to object’s environment, whereas interfaces represent access

points of services. 

Typically, an inter-domain TINA reference point separates two business roles with distinguished

functionality. A RP-facet is associated with one of the architectural parts separated by the reference

point, referred to as RP-facet role. 

The RP-facet role is to denote the functionality of interest in relation to the corresponding reference

point. The dynamic aspect of operations is described by use scenarios. The purpose-oriented use

scenarios describe potential interactions between the RP-facet role and it’s environment.

Before we define the notion of RP-facet, we need to define miscellaneous notions such as dependent

operations and self-containment. 

Definition 1: An interface3 I has a set of operations SOI. SOI is divided into the set of mandatory and

optional operations SOI
mand and SOI

opt, resp., referring to the set of operations, which

2. Operational interfaces are considered currently. The results are directly applicable to event interfaces. Stream interfaces will be considered
in a further work.

3. An interface denotes here an interface instance of an interface type, i.e. potentially there are a number of interfaces of the same interface
type at a reference point.



7

need or resp. can be offered by this interface. It holds that SOI
mand ∩ SOI

opt =∅ and

SOI
mand ∪ SOI

opt=SOI.

Definition 2: A reference point R has a set of interfaces SIR. SIR is divided into the set of mandatory

and optional interfaces SIR
mand and SIR

opt, resp., referring to the set of interfaces, which

need or resp. can be offered by this reference point:

• I ∈ SIR 
mand iff SOI

mand≠∅

• I ∈ SIR 
opt iff SOI

mand=∅

It holds that SIR
mand ∩ SIR

opt =∅ and SIR
mand ∪ SIR

opt=SIR.

Assumption 1: Subsequently we assume that the set of all operations SOR of reference point R, 

i.e , is not empty.

Definition 3: Let o be an operation at an interface I of reference point R, i.e. o ∈ SOI. Let o1..on be

further operations at R, i.e. oi ∈ SOR, i=1..n. 

o is dependent on o1..on if the invocation of o requires previous invocations of o1..on.4

o is independent if for all n there is no sequence of operations o1..on,  on which o is

dependent.

Definition 4: The dependent operations are either specified explicitly or derived from the use

scenarios of the reference point.

Definition 5: The dependence relation depI,R ⊆ SOI x ℘(SOR) of operations at interface I, where

℘(SOR) denotes the powerset of all operations of reference point R is defined such that 

∀o ∈ SOI ∀so= {o1..on} ∈ ℘(SOR): (o, so)∈depI,R  iff

• o is dependent on o1..on and

• ∀ok ∈ SOR: if o is dependent on ok then ok ∈ so.

Lemma 1: • ∀o ∈ SOI : ∃!(o, {o1..on})∈depI,R , i.e. (o, {o1..on}) in depI,R  is unique.

• o is an independent operation iff (o, ∅)∈depI,R .

A RP-facet is self-contained in terms of functionality. Self-containment is defined with respect to the

dependence relation. It is the core property of a RP-facet. Please note that the set of operations of an

interface may be used only partially in a RP-facet:

4. The dependence relation can be further refined to cover further aspects of dependencies. For example, if operation o2  is only executable
when operation o1  returns x,  then o2  can be defined to be result-dependent on o1 . Or, if interface iB  is only reachable through an
operation o1  of interface iA , then o2  can be defined to be reachable-dependent on o1 . 

SOR SOI

I SIR∈
∪=



8

Definition 6: A RP-facet FR is a set of operations of a reference point with the following properties:

• it is a non-empty set and

• ∀I∈SIR ∀o∈SOI ∀(o, {o1..on})∈depI,R : if o∈FR then oi∈FR, i=1..n.

(the self-containment property)

The set of all RP-facets is denoted by SFR. 

Assumption 2: Subsequently, we assume that SOR is self-contained.

Within the same reference point, dependent operations are captured by the same RP-facet:

Lemma 2: ∀I,J∈SIR ∀o1∈SOI ∀o2∈SOJ: if o1∈FR and o1 is dependent on o2, than o2∈FR.

RP-facets can be ordered. This order will be used to identify necessary steps in conformance testing:

Definition 7: The order relation ≤ on RP-facets uses the subset relation: 

∀F1, F2 ∈SFR: F1≤F2 iff F1⊆F2.

The core is used to denote the mandatory, self-contained subset of a reference point. It is the set of all

operations that need to be offered at an reference point in order to have it self-contained with respect to

the dependence relations and complete with respect to the mandatory operations. If the core is empty

then the complete reference point is an optional one. 

Definition 8: The core CR of a reference point R is the set of all mandatory operations of all

mandatory interfaces of R with all their dependent operations, i.e.

• ∀I∈SIR
mand ∀o∈SOI

mand: o∈CR and 

• ∀o∈CR, ∀so ∈ SOR
n: (o, so) ∈depI,R : so ⊆ CR.

Assumption 3: Subsequently, we assume that CR is non-empty.

Lemma 3: • CR is unique.

• CR is a RP-facet.

• For each RP, there exist a partitioning into RP-facets Fi∈SFR, i=1..n, such that 

SOR = ∪i=1..nFi and Fi ∩ Fj=∅ for i≠j.

• SOR is a RP-facet.

• SOR is the maximal element of ≤, i.e.∀F∈SFR: F ≤ SOR.

To support incremental specification, RP-facets are built cohesively, with the core as the origin. This

leads to the definition of core-based RP-facets.



9

Definition 9: A core-based RP-facet FR,C is a RP-facet that contains all operations of the core, i.e.

.The set of all core-based RP-facets is denoted by SFR,C.

A core-based RP-facet covers at least the core and possibly additional optional operations. 

Lemma 4: • CR is a core-based RP-facet, i.e. CR∈SFR,C.

• SOR is a core-based RP-facet, i.e. SOR∈SFR,C.

A reference point has a core and may have zero or more additional cohesive core-based RP-facets.

Lemma 5: • CR is the minimal element of the order relation ≤ on SFR,C, 

i.e. ∀F∈SFR,C: CR ≤ F.

• SOR is the maximal element of the order relation ≤ on SFR,C, 

i.e. ∀F∈SFR,C: F ≤ SOR.

• If CR=SOR then is SFR,C a singleton.

RP-facets can partition a reference point into non-overlapping portions. Such portions are called in [17]

segments. A segment captures a subset of the reference point’s functionality. Segments of a reference

point may be interrelated. 

The relation of partitioning RP-facets and core-based RP-facets are depicted in Figure 1.

The conformance test method (see Section 3.2) will be based on the concept of core-based RP-facets

and their hierarchies, as they naturally reflect the mandatory and optional requirements for a

reference point and their relation. 

CR FR C,⊆

 Figure 1  Reference Points and its RP-Facets

F3F_2

F_4F_3

F_1R

Partitioning  of R into 

RP-Facets F_1 .. F_4 with

SOR= F_1 ∪ F_2 ∪ F_3 ∪ F_4 and

F_1 ∩ F_2 =∅, etc.

Hierarchies of core-based RP-facets

CF0 .. CF3 of R with

CF0 ≤ CF1 ≤ CF3 ≤ SOR and

CF0 ≤ CF2 ≤ SOR.

CF3

CF1

CF2

Core

CF0

R



10

3.1.2 RP-Facet Specification

Making the RP-facet concept practical is essential for real, industrial relevant systems. This is possible

by providing a development method for RP-facets in combination with appropriate specification

techniques. Even more, the unambiguous specification of RP-facet including its static and dynamic

models is crucial for testability. As any formalization reduces misinterpretation of the system under

discourse, a formal specification supports in particular automated test generation and the possibility to

validate tests for their soundness against the specification.

The reuse of specification parts of the reference point under test and therefore the reuse of specification

techniques for distributed system is desired as it makes test development more efficient and allows a

better integration of system development with test development.

Our approach for specifying RP-facets is based on the Object Definition Language (ODL [13]) for

signatures of RP-facets in combination with Message Sequence Charts (MSC [12])5. 

ODL has been selected not only due to its mandatory use within TINA specifications. Furthermore. the

structural information in ODL specification is used as a basis for the test configuration.  Additions to

ODL are needed to cover specific aspects of RP-facets according to the concepts introduced in the

previous section. The specification template for RP-facets comprises:

• indication to the related reference point and the RP-facet role,

• statical specification of the RP-facet in ODL, and

• behavioral specification of the RP-facet in terms of use scenarios, including representations of

dependence relations in MSC.

MSC presents  the communication behaviour  in a very intuitive and transparent manner, particularly in

the graphical representation. The MSC-language is easy to learn, use and interpret. In connection with

other languages it can be used to support methodologies for system specification, design, simulation,

testing, and documentation. Due to its wide acceptance and practicability, MSC is a good candidate to

be used for the behavior specification of objects defined in ODL. 

Furthermore, we use the standard test notation TTCN (Tree and Tabular Combined Notation) to

formulate test cases for RP-facets. TTCN has been selected as it is the only standardized test notation

within telecommunication, it is accepted by both ISO and ITU, official test suites are written in TTCN

and there is a growing number of standardized, internationally recognized, and publicly available test

5. We concentrate currently on the on the functional aspect in the behavioral specification of reference points. Extensions to support
description of operational aspects, e.g. QoS, usage, will be elaborated in future work.



11

suites defined in TTCN. In addition, there is a short step between specification and test execution.

Finally, test suites in TTCN can be easily maintained, flexibly modified and extended 

Short overviews on the notations used for the RP-facet template are given in the appendices of this

document. Further details can be found in tutorials on ASN.1 [1], MSC [14] and TTCN [28].

The RP-facet specification and test case generation cycle is presented in Figure 2. ASN.1 is the

commonly used data representation form by MSC and TTCN. Thus, mappings for data types and

constants from ODL to ASN.1 need to be defined. 

3.1.2.1 Structural Specification Template

The template for the RP-facet structural specification is an extension of the TINA reference point

specification template [22], which uses TINA-ODL [24], referred to as ODL in the following.

ODL is a superset of the OMG IDL (abbr. as IDL). In fact, most of the current TINA reference points

are specified using IDL only. A reference point specification is a collection of interface signatures. A

naming convention is used to indicate the business role that provides an interface, for example, an

interface named using the prefix TINARetRetailer is to be supported by a TINA retailer stakeholder. In

addition, IDL does not have notions to specify which interfaces are provided by a business role and

which interfaces are required by it. The ODL’s object template provides a notion for this multiple

interfaces. Therefore, the following usage of ODL is proposed:

• Each business role separated by a inter-domain reference point is represented by a CO

(Computational Object) in ODL.

• Interfaces provided by a business role are indicated using the supports notion.

ODL ASN.1
Data

Type & Const
Mapping

MSC

Structure & Signature
Transformation

Inclusion T T C N
T est C ase

Behavior Description
TransformationInformal

Scenario
Description

Formalization

 Figure 2  RP-facet specification and test generation

Inclusion

Diagram

Definition

Test
Data

Inclusion

Executable
Tests



12

• Interfaces used by a business role are indicated using the requires notion.

Other interface relevant signature definitions do not change.

3.1.2.2 ODL to ASN.1 Data Mapping

The ODL to ASN.1 mappings for data types and constants are in-line with the rules defined in [5]6. Rules

for basic type translation are shown in Table 1. Structure types are mapped according to Table 2. 

ODL exception declarations are struct-like. Hence, they are mapped to ASN.1 SEQUENCE types.

The mapping for the Object type is aligned to the OMG interoperable object reference (IOR) concept.

An IOR is the global representation of the corresponding object and is composed of ASCII characters.

For systems that are compliant with this concept, ASN.1 IA5String type is used.

3.1.2.3 Behavioral Specification Template

Message Sequence Charts (MSC) is a graphical and formal trace language defined by ITU-T [12]. MSC

describes interactions between message-passing instances. MSC-2000 [12] is a new version of the

standard that has been approved only recently. It has improved structural, data and time concepts.

Method calls are introduced to support the description of control flows.

To use MSC for use scenarios of RP-facets, some structure and signature transformations are required.

6. This work is based on CORBA 2.2 specification. Mappings for IDL types included in the most recent and up-coming CORBA
specifications, e.g. the value type, will be considered in future work.

ODL Types ASN.1 Type

long, unsigned long, long long, unsigned long long, short, unsigned short INTEGER

char, wchar, string, wstring GraphicString

octet OCTET STRING(SIZE(1))

boolean BOOLEAN

void NULL

float, double, long double Real

Table 1  Mapping rules for basic types

ODL Type ASN.1 Type

struct SEQUENCE

sequence SEQUENCE OF

enum ENUMERATED

array SEQUENCE SIZE(n) OF

any CHOICE

union SEQUENCE 

Table 2  Mapping rules for structured types



13

Rule 1 MSC diagrams for a RP-facet are organized by a MSC document. The identifier of the MSC

document is equivalent to the name of the RP-facet.

A MSC document defines an instance kind for a RP-facet. It contains instances, messages, timer and

MSC diagram declarations. In addition, a data language can be declared.

Rule 2 The RP-facet role, the environment of the RP-facet role, every supported/required interfaces

are mapped to separate instances.

Instances for the RP-facet role and supported interfaces form the scope of the RP-facet, while other

instances represent the scope of the environment. Interface instances play the role of service supplier.

Instances of the RP-facet role and its environment are of the service consuming role.

Rule 3 The order relation between RP-facets, e.g. F1 ≤ F2, is represented by inheriting the MSC

document for F1 into the MSC document for F2.

Inheriting a MSC document into another results in inheriting all declarations and MSCs from the

inherited into the inheriting MSC document. This reflects the idea that for F1 ≤ F2, F2 covers F1

completely as it is.

Rule 4 The dependence relation is represented by MSC expressions or high-level MSC (HMSC),

where the MSC sequential operator is used to order the individual operation invocations as a

sequence of simple MSCs reflecting separate operation invocations and the MSC alternative

operator for the subsequent behaviour in accordance to the potential outcomes of operation

invocations.

Rule 5 MSC specifications for RP-facets consists of two diagram types: 

• High-level MSCs (HMSC) give an overview on the main structure and dependencies at the

RP-facet. Here, references to further MSCs (usually simple MSC, see below), which are

typically executed sequentially and combined with guards, are used. Enhanced use

scenarios of RP-facets contain also parallel interactions at different interfaces. The

operands of parallel expressions are represented by separate MSC instances. 

• Simple MSCs contain a detailed definition of allowed message exchange and timer events

between involved MSC instances. Further they allow the usage of constructors for

behavior control (e.g. alternatives, loops etc.) and guarded executions.

MSC expressions, which can be graphically represented by HMSC, are the basic concept to represent

the dependence relation between operations. If o1 needs to be invoked before o2, it will be represented



14

by M1 seq M2 with M1 reflecting the invocation of o1 and M2 the invocation of o2. In the case that

several outcomes of o1 and/or o2 are possible, within M1 and/or M2 the alternative operator alt in

combination with conditions will be used in addition. Please note that more complex behavior definitions

for RP-facets will use also parallel, loop and optional expressions.

Rule 6 An ODL operation declaration is transformed to MSC message declarations. Mandatory is a

message corresponding to request on the operation. If the operation is not a “oneway”

operation, a message in accordance with reply on the operation is also defined. If appropriate,

each potential exceptional outcome of the operation is translated into a separate message.

MSC asynchronous messages are selected rather than method calls to allow the representation of

alternative operation invocation outcomes, in particular under exceptional conditions. 

The rule for attribute transformation is defined analogously:

Rule 7 An ODL attribute declaration is transformed to MSC message declarations. Mandatory is a

message corresponding to the “get” operation on the attribute. If the attribute is not a

“readonly” attributed, a message in accordance with the “set” operation on the attribute is

also defined.

The data concepts of MSC-2000 allows the flexible use of a data language of user’s choice. No MSC

specific data language is defined. MSC-2000 provides syntactical and semantical functions as interfaces

to the use of external data languages within MSC. 

3.2 Test Method

The RP-facet concepts, in particular the self-containment property of a RP-facet, allow system evolution

by incremental specification and implementation. In addition, RP-facets provide also testable

specifications:

• The identification of the RP-facet role and its communication parties yields to the definition of the

scope of the System Under Test (SUT), as well as the environment of the SUT which will be

emulated by components of the Test System (TS). 

• The structural specification of the RP-facet to be tested, in form of ODL and ASN.1 definitions, can

be shared by the TS.

• The formalization of behavioral description of RP-facet use scenarios in MSC supports an

automated generation of tests.



15

• The self-containment property of RP-facets supports the identification of well-defined states of the

SUT to achieve reproducible test results.

• The operation dependencies of a RP-facet define requirement on the sequence of test execution.

In order to support an efficient test development, we propose to use abstract test specifications. Our

approach is based on the standard test notation TTCN [8].

3.2.1 Test Specification

TTCN (Tree and Tabular Combined Notation) was designed for conformance testing of OSI protocol

implementations [8]. The test architecture is based on an asynchronous communication between SUT

and TS. PCO (Point of Control and Observation) is an abstract location, where stimuli are sent to the

SUT and reactions of the SUT are observed, either in form of Protocol Data Units (PDUs) or Abstract

Service Primitives (ASPs). In decentralized test architectures, where typically several Parallel Test

Components (PTCs) in addition to the Main Test Component (MTC) communicate with the SUT, more

than one PCOs can be assigned to a PTC.

The analogy to the asynchronous message passing mechanism of MSC facilitates the transformation of

MSC constructs to TTCN constructs. At first, it leads to the representation of MSC messages as TTCN

ASPs7:

Rule A MSC messages representing ODL operations or attributes are translated into TTCN ASPs.

According to Rule 6 and Rule 7, the ASPs are denoted by request-ASP, reply-ASP and exception-ASP.

Further, PCOs, test components and test configurations need to be identified for the test system. Due to

the distinction of supported and required interfaces, two classes of PCOs can be derived from MSC

instances:

Rule B A MSC instance representing a provided interface of the RP-facet role is interpreted by a

client-PCO over which request-ASPs are sent to the SUT and reply-ASPs or exception-ASPs

from the SUT are observed.

Rule C A MSC instance representing a required interface of the RP-facet role is interpreted by a

server-PCO over which request-ASPs from the SUT are received and reply-ASPs or exception-

ASPs to the SUT are sent.

7. The selection of ASPs instead of PDUs is based on the analogies between the object model and the OSI reference model. Please refer to
[5] for details.



16

The assignment of one PCO to one PTC is not stringent, but recommended. The semantic of a PTC is

constrained by the class of PCOs it has. A PTC is in a client role when it communicates via a client-PCO

with the SUT, and vice versa. Hence:

Rule D Only PCOs of the same class, i.e. either client-PCOs or server-PCOs, can be assigned to a

PTC. The assignment of more than one PCOs to a PTC is allowed, as long as the processing

of test events, e.g. parallel sending of ASPs, is not restricted. 

The MSC inline expressions allow behavioral composition of event structures within a MSC. The

operators refer to alternative (alt), parallel composition (par), iteration (loop), exception (exc) and

optional (opt) parts. The alt operator, used in the example in Figure 4, defines alternative executions of

MSC sections. In TTCN, the distinction between sequentialized and alternative behavior is identified by

the indentation level of TTCN statements (subsequent TTCN events have a higher indentation as

preceding events). Therefore:

Rule E MSC inline expressions are expressed in TTCN by a combination of appropriate indentation

levels, TTCN conditions and GOTO-statements. 

The TTCN timer concept addressing start, time-out and cancellation of timers is sufficiently to cover

MSC timer events.

The derivation of HMSCs to TTCN test descriptions appears straight-forward: 

Rule F MSC references are mapped in TTCN to test step calls. MSC conditions are directly

interpreted by TTCN qualifiers.

TTCN test steps are a macro-like kind of subroutines. They are also used in case of RP-facet

specifications representing extensions of previously specified smaller RP-facets. For example, it is

typical that the test specification derived from a small RP-facet specification (e.g. from the minimal core-

based RP-facet) will become the preamble (i.e. the very first test behavior at the beginning of a test

description) of another “bigger” RP-facet test specification. 

3.2.2 Test Campaign Derivation

In general, software testing is time and cost intensive, i.e. critical for large systems. Therefore, CTMF [7]

gives advise for practical test purpose identification and for the grouping of test cases. We define a test

suite structure according to core-based RP-facet hierarchies of the reference points under test. The

sequence of test execution for the reference points under test is derived from the dependence relation

between its operations. 



17

The basic idea is to start with testing the core of a reference point and then to test incrementally by a

repeating selection and testing of small extensions of the set of already tested operations. Each extension

should comprise a complete core-based RP-facet. 

At first, we define the ordered sequence of RP facets to be tested: 

• the minimal core-based RP facets is tested first

• subsequently, other core-based RP-facets are tested according to their hierarchy. 

Secondly, we define the sequence of testing operations within a RP facet:

• Independent operations are those that can be tested without any preconditions (i.e. without

preambles in the test case body).

• Dependent operations can be tested only of the operations they are depending on have been tested

already successfully.

An algorithm for the test method is as follows. For simplicity, we assume that the system under test S

realizes reference point R by means of core-based RP-facets CF1..CFn  with CR=CF1 ≤ ... ≤ CFn=SOR.

Let T be the set of already tested operations at R. T is divided into TP and TF. TP refers to the set of

operations that passed all tests. TF comprises those operations for which at least one test failed. Further,

let I be the set of operations that are not testable as they depend on operations, which failed their tests.

Let N be the core-based RP facet under test in the current testing iteration.

Start:  T= ∅, I= ∅, i=1, N= CFi. 

Iteration i : 

 Step I:Select o ∈ N with (o, ∅)∈depI,R  :                                      
/* independent operations */

Execute the tests for o .
If o passes all tests, then TP= TP ∪ {o} else TF= TF∪ {o}.

In any case, N=N\{o}

Repeat until no further operations o with  (o, ∅)∈depI,R exist .

Proceed with Step II.

 Step II:Select  o ∈ N with (o, {o1..om})∈depI,R  and ∀j,j=1..m: oj∈ T     

 /* dependent operations whose preconditional operations have been already tested*/

If  ∃j=1..m: oj∈ TF , then I= I ∪ {o}.
Else, execute the tests for o .
If o passes all tests, then TP= TP ∪ {o} else TF= TF∪ {o}.

In any case, N=N\{o} .



18

Repeat until  no further operations o with ((o, {o1..om})∈depI,R  and ∀j,j=1..m: oj∈ T) exist .

Proceed with Step III.

 Step III:Select  o ∈ N with (o, {o1..om})∈depI,R  and ∃j=1..m: oj∈ I

/*dependent operations for which  not all preconditional operations are tested successfully*/

Then I= I ∪ {o} and N=N\{o} .

Repeat until no further operations o with ((o, {o1..om})∈depI,R  and ∃j=1..m: oj∈ I) exist .

Proceed with Step IV.

 Step IV:Select  o ∈ N with (o, {o1..om})∈depI,R  and ∃j=1..m: oj∈ N

/*dependent operations with cyclic dependencies*/

Execute the tests for oj.

If oj passes all tests, then TP= TP ∪ {oj} else TF= TF∪ {oj}.

In any case, N=N\{oj} .

Proceed with Step III.

Repeat until no further operations o with (o, {o1..om})∈depI,R  and ∃j=1..m: oj∈ N exist .

Proceed with Step V.

 Step V:If  N empty and not yet termination, take i=i+1,  N=CFi\ (T ∪ I)  and proceed with Step II.

Termination :  If T ∪ I = SOR terminate.

Interface operation tests will comprise static operation header tests as well as dynamic testing of

operations semantics. First, the static header tests result from combinations of valid/invalid parameters

and test values according to the interface signature and constraints [19]. The other test group which

focuses on testing of valid/invalid sequences of operations at RP-facets can be derived using traditional

test derivation algorithms well known from e.g. labelled transition systems (LTS [3]) or extended finite

state machine (EFSM [18]) based test generation methods implemented in several academic and

commercial test derivation tools.

3.3 Test Documentation

Test documentation should be given on two levels:

• on the test procedures to assess the conformance of systems for RP-facets

• on the results of test execution for a concrete system.

The test procedures realized by a TTCN test suites are best described by the TTCN ATS itself. The test

documentation can be given in 

• TTCN/mp to be readable with a TTCN editor (e.g. ITEX in [21]) or a TTCN browser (e.g. [26]),



19

• Postscript, PDF, etc. generated from TTCN/mp to be readable with a viewing tool, or

• HTML, XML, etc. generated from TTCN/mp to be readable with a Web browser.

Please note that the test documentation on  test procedures is considered to be essential for a wide

acceptance of the TINA conformance branding, as for potential customers of the TINA conformance

branding the test procedures are transparent and serve as a base for understanding of and confidence in

the testing process.

The results of test execution for a concrete system should be presented in two types of test reports: a

System Conformance Test Report (SCTR) and a RP-Facet Conformance Test Report (FCTR). Those test

reports should be based on the principles defined in [9]. In addition, the test laboratory may also produce

detailed diagnostic trace information to accompany the test reports.

The SCTR provides a summary of the results of the conformance testing of the system under test.  A

SCTR template is given in Annex E. Furthermore, a SCTR shall be accompanied with FCTRs for each

tested RP-facet.  A FCTR shall follow the template given in Annex F.

3.4 Testing in Practice

This section introduces some tools for handling specifications and test suites for RP-facets in the selected

techniques ODL, ASN.1, MSC and TTCN. Those tools make the proposed conformance testing process

feasible for use in a production environment.

A graphical ODL specification tool is Y.SCE [30]. It is a CASE tool developed by GMD FOKUS. This

tool provides notations based on the reference model of ODP, for the requirement capturing in the

enterprise viewpoint, the specifciation of an information model and the definition of the functional

decomposition in the computational viewpoint. It supports the generation of  IDL, ODL and C++, as well

as the generation of SDL-92 skeletons which can be imported to Telelogic SDT tool [21].

Telelogic also provides  tools for MSC, ASN.1 and TTCN, together with the SDL tools in an integrated

toolkit, named TAU [21]. It provides editing of MSC diagrams and TTCN test suites, as well as the

generation of C-code skeletons from the test suite specification and a run-time environment. Verilog that

was just aquired by Telelogic provides as well within ObjectGeode tools for MSC and ASN.1 [15].

The TTCN Toolbox is a product of Danet [27]. It supports the specification, compilation, execution and

analysis of abstract and executable test suites written in TTCN.



20

Furthermore, test equipment vendors, such as HP, Siemens, Tektronix, Motorola, Nokia, etc., provide

also editors and validators for TTCN test suites and compilers that produce test equipment specific code

from test suite specifications.

The execution of TTCN-based test cases for CORBA-based systems, i.e. also for those TINA platforms

that are based on CORBA ORBs, is supported by TCgate and TTman [29], two tools developed recently

at GMD FOKUS. TCgate represents a generalized gateway between TTCN-based test systems and

CORBA-based systems to be tested. TTman takes the role of a test manager for the setup, configuration

and control of tests as well as for test reporting.  

3.5 Demonstrate Usability

This section presents an example on how the proposed concepts and specification techniques are applied

to the TINA Retailer reference point (Ret-RP)8 [23]. The retailer is the focus of the consideration. 

Using the proposal introduced in Section 3.1.2, the specification is extended with an indication of

business roles  as well as an indication of supported and required interfaces. As shown below, the

business role retailer is represented by the CO Retailer. It requires six interfaces from the CO Consumer,

which may be defined in a separate ODL document. Retailer supports five interfaces, among them the

i_RetailerInitial interface that provides the operation requestNamedAccess.

#include  "TINARet_Consumer.odl"
module  TINARet {

CO Retailer {
requires

Consumer::i_ConsumerInitial;
Consumer::i_ConsumerAccess;
Consumer::i_ConsumerInvite;
Consumer::i_ConsumerTerminal;
Consumer::i_ConsumerAccessSessionInfo;
Consumer::i_ConsumerSessionInfo;

supports
i_RetailerInitial;
i_RetailerAuthenticate;
i_RetailerNamedAccess;
i_RetailerAnonAccess;
i_DiscoverServicesIterator;

interface  i_RetailerInitial {
void  requestNamedAccess (

in  TINACommonTypes::t_UserId userId,
in  TINACommonTypes::t_UserProperties userProperties,
out  Object namedAccessIR,
out  TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out  TINAAccessCommonTypes::t_AccessSessionId asId

) raises  ();
...};

interface  i_RetailerAccess {...};

8. For readability reason, the example uses simplified naming and scenarios from the original Ret-RP specification.



21

...
};

};

From the textual description of Ret-RP business scenarios, two RP-facets9 can be derived according to

Definition 7 (see Section 3.1.1):

• The core facet TINARet_Retailer_core involves login and logout of a consumer at the retailer

domain. The retailer’s interface i_RetailerInitial and the operation requestNamedAccess are used by

login.

• An additional facet TINARet_Retailer_add1 is based on the core facet. It is to start a service after a

successful login, and to terminate the service before the logout.

TINARet_Retailer_core is organized by the MSC document and High-level MSC (HMSC) presented in

Figure 3. According to Rule 2, five instances (prefixed by inst) are defined: Retailer, i_RetailerInitial,

i_RetailerAccess, Consumer and i_ConsumerInitial. The operation requestNamedAccess is mapped to

three messages (indicated by msg), respectively for the request, reply and exception related to the

operation (see Rule 6). The inclusion of data types and constants translated to ASN.1 is enabled by the

language and data constructs. The HMSC TINARet_Retailer_core_msc uses two utility MSCs Login

and Logout, and conditions Idle, LoginFailed and LoginSuccessful. It describes the dependency of the

logout activity on a successful login.

Details of purpose-oriented use scenarios of RP-facets are described by MSC event traces. Figure 4

shows the message exchanges between a Consumer instance and a i_RetailerInitial instance in relation

9. We assume, login and logout functionality are mandatory, while start and termination of services are optional functionality.

mscdocument TINARet_Retailer_core
inst Retailer
inst i_RetailerInitial 

variables i_na: Object, exp: PropertyError, 
int  i_RetailerAccess
int  Consumer 
 varabiles naRef: Object, userInfo: UserProperty;
int  i_ConsumerInitial
msg requestNamedAccess_req(UserProperty);
msg requestNamedAccess_rpl(Object);
msg requestNamedAccess_exp(PropertyError);
language ASN1; 

data #include TINARet_Retailer.asn1; 
#include TINARet_Consumer.asn1

TINARet_Retailer_core_msc

Login

 Figure 3  MSC example of TINARet_Retailer_core

Logout

msc TINARetRP_Facet_core_msc

Idle

Login

Logout

LoginSuccessfulLoginFailed



22

to the login activity. The two alternative outcomes of a request on the operation requestNamedAccess

are represented by use of the MSC inline expression alt. Data used in message parameters and/or

conditions are defined in the data part of the MSC document.

The cohesive relation of Ret_Retailer_add1 to Ret_Retailer_core is in particular reflected by the reuse

of declarations and utility MSCs, as presented in Figure 5. To support start service related operation,

declarations of the messages startService_req, startService_rpl and startService_exp are added to the

core facet MSC document. Furthermore, two new utility MSCs are introduced: StartService and

EndService. Ret_Retailer_add1_msc extends the core facet’s HMSC by a description of the logical

relation between StartService and EndService MSCs.

msc Login

alt

requestNamedAccess_req(userInfo)

requestNamedAccess_rpl(naref:= i_na)

requestNamedAccess_exp(exp)

Consumer i_RetailerInitial

when valid(userInfo)

otherwise

userInfo:=USER_INFO

i_na:=resolve(NA_REF)

exp:=PROP_ERR

LoginSuccessful

LoginFailed

 Figure 4  Login MSC diagram



23

Table 3 shows the dynamic part of the TTCN specification of a test case in accordance with the Login

MSC (Figure 4). The tabular form is simplified to ease the understanding.

In this example, the SUT is an implementation of the retailer domain core RP-facet. This test case is to

evaluate the login activity at the retailer’s i_RetailerInitial interface. The TS emulates the behavior of a

client of i_RetailerInitial. It uses a client-PCO named PCO1_i_RetailerInitial defined using Rule B. The

purpose of this test case is to verify: after a request on the operation requestNamedAccess with valid user

information is sent to the SUT, a reply of requestNamedAccess is received by TS (see line 2 and 4). To

indicate the ASP kind, the request-ASP is prefixed by pCALL, and the reply-ASP is prefixed by pREPLY.

The test step GetInitialRef (line 1) used as preamble is mainly intended to allow the resolution of object

references that will be used in the test case. It is not derived directly from the MSC. It is a general purpose

test step. In addition, a timer Timer1 is used to ensure that a test event (including time-out events) will

occur after a given time even in case that the SUT does not answer.

The postamble Logout (line 5) after the receive event recalls the MSC reference Logout in the HMSC of

the core RP-facet.

mscdocument TINARet_Retailer_add1
inst Retailer
inst i_RetailerInitial 

variables i_na: Object, exp: PropertyError;
int  i_RetailerAccess
int  Consumer 
 varabiles naRef: Object, userInfo: UserProperty;
int  i_ConsumerInitial
msg requestNamedAccess_req(UserProperty);
msg requestNamedAccess_rpl(Object);
msg requestNamedAccess_exp(PropertyError);
msg startService_req;
msg startService_rpl;
msg startService_exp;
language ASN1; 

data #include TINARet_Retailer.asn1; 
#include TINARet_Consumer.asn1

 Figure 5  MSC example of TINARet_Retailer_add1

TINARet_Retailer_add1_msc

Login Logout

StartService EndService

msc TINARet_Retailer_add1_msc

Idle

Login

Logout

LoginFailed LoginSuccessful

StartService

StartServiceSuccessful StartServiceFailed

EndService



24

The implementation and execution of TTCN-based test cases in a CORBA environment is discussed

in [5]. 

3.6 Accreditation of Testing Vendors

Test Case Dynamic Behavior

Nr Label Behavior Description Constraints Ref Verdict

1 +GetInitialRef

2 PCO1_i_RetailerInitial ! 
pCALL_ i_RetailerInitial__requestNamedAccess

pCALL_requestNamedAccess_s1

3 START Timer1

4 PCO1_i_RetailerInitial ? 
pREPLY_i_RetailerInitial__requestNamedAccess

CANCEL Timer1

pCALL_requestNamedAccess_r1 (P)

5 +Logout

6 ?TIMEOUT Timer1 I

Table 3  TTCN test case example



25

4 Compliance to Evaluation Criteria

The response to the TINA Conformance Testing RfP presents the new concept of reference point facets

(RP-facets) to express the architecture and behavior of distributed systems in a formal, detailed and

extensible manner. RP-facets are based on the well-established concept of reference points as used in

ODP and TINA. RP-facets describe statical and dynamic aspects of reference points as well as pre- and

post-conditions for their use. The response gives a mathematical characterization of RP-facets, defines

a specification template for the definition of RP-facets and derives a conformance test method for their

validation. The basis for conformance testing are constituted by a specific kind of RP-facets - the core-

based facets. The conformance testing process makes use of dependencies between RP-facets and the

core RP-facet. An example taken from the TINA retailer reference point shows the application and

practical use of RP-facets. 

The response provides the information requested in RfP Sections 3.1, 3.2, 3.3, 3.4,  and 3.5, but not for

RfP Section 3.6. 



26

5 Related Standards and Documents

[1] ASN.1 Tutorial: Burton S. Kaliski Jr.: A Layman's Guide to a Subset of ASN.1, BER, and DER. - An RSA

Laboratories Technical Note, Revised November 1, 1993, ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc.

[2] R. V. Binder: Testing Object-Oriented Systems, Models, Patterns and Tools, Addison-Wesley, 1999. 

[3] E. Brinksma, L. Heerink, and J. Tretmans: Developments in Testing Transition Systems.- Proc. of the

Int.Workshop on Testing of Communicating Systems X, 1997.

[4] S. Ghosh, A.P. Mathur: Issues in Testing Distributed Component-Based Systems.- In Proc. of the First

Intern. ICSE Workshop on Testing Distributed Component-Based Systems, Los Angeles, U.S.A, May

1999.

[5] M. Li, I. Schieferdecker, A. Rennoch: Testing the TINA Retailer Reference Point, Proceedings of

ISADS’99, Tokyo, Japan, March 1999.

[6] M. Li, I. Schieferdecker, A. Rennoch: Formalization and Testing of Reference Point Facets, FMICS’2000,

Berlin, Germany, April 2000.

[7] ISO/IEC 9646-2: Information Technology - Open Systems Interconnection - Conformance Testing

Methodology and Framework - Part 2: Abstract test suite specification, 1991.

[8] ISO/IEC 9646-3: Information Technology - Open Systems Interconnection - Conformance Testing

Methodology and Framework - Part 3: The Tree and Tabular Combined Notation (TTCN), edition 2, Dec.

1997.

[9] ISO/IEC 9646-5: Information Technology - Open Systems Interconnection - Conformance Testing

Methodology and Framework - Part 5: Requirements on Test Laboratories and  Clients for the Conformance

Assessment Process, 1991.

[10] ITU-T Rec. X.208 | ISO/IEC  8824: 1999 Specification of Abstract Syntax Notation One (ASN.1), Geneva,

Swiss.

[11] ITU-T Rec. X.901 | ISO/IEC 10746-1: 1995, Open Distributed Processing - Reference Model Part 1,

Geneva, Swiss.

[12] ITU-T Z.120: Message Sequence Charts (MSC’2000), Nov. 1999.

[13] ITU-T Z.130: Object Definition Language (ITU-ODL), March 1999.

[14] MSC Tutorial by E. Rudolph, P. Graubmann, J. Grabowski: Tutorial on Message Sequence Charts.- Proc.

of the SDL Forum 1997. 

[15] ObjectGeode (MSC Support Tool), http://www.csverilog.com/.

[16] OMG: Common Object Request Broker Architecture (CORBA), version 2.3, 1999.



27

[17] OMG: Telecommunications Service Access and Subscription, joint revised submission, telecom/00-02-02,

Feb. 2000.

[18] A. Petrenko, N.Yevtushenko and G. v. Bochmann: Testing deterministic implementations from nonde-

terministic FSM specifications.-Proc.of the Int. Workshop on Testing of Communicating Systems IX, 1996.

[19] A. Rennoch, J. de Meer, I. Schieferdecker: Test Data Filtering, 9. GI/ITG-Fachgespräch "Formale

Beschreibungstechniken für verteilte Systeme", München (D), June 1999. 

[20] Steedman, D.: Abstract Syntax Notation One (ASN.1), Technology Appraisals Ltd., 1990.

[21] Tau Tool Set (MSC and TTCN Support), http://www.telelogic.com/

[22] TINA-C: TINA Reference Points, version 3.1, Jun. 1996.

[23] TINA-C: Ret Retailer Reference Point Specification, version 1.1, 1999. 

[24] TINA-C: Object Definition Language (TINA-ODL), version 2.3, Jul. 1997.

[25] TINA-C: TINA-CAT WorkGroup Request for Proposals, TINA Conformance Testing Framework, version

1.0, Jul. 1999.

[26] TTCN Browser, http://www.davinici-communications.com.

[27] TTCN-Toolbox, http://www.danet.de/servlet/Danet/browse.en.html -> Products.

[28] TTCN tutorial by Telelogic AB, Web ProForum Tutorial, http://www.webproforum.com/acrobat/ttcn.pdf.

[29] TTman and TCgate (Test Execution Tools for TTCN), http://www.fokus.gmd.de/research/cc/tip/ ->

Products&Services.

[30] Y.SCE (ODL Support Tool), http://www.fokus.gmd.de/research/cc/platin/ -> Products&Services.



28

6 Glossary

ASN.1 Abstract Syntax Notation One

ATS Abstract Test Suite

ETS Executable Test Suite

FCTR RP-Facet Conformance Test Report 

ICS Implementation Conformance Statement

IUT Implementation under Test

IXIT Implementation Extra Information for Testing

MSC Message Sequence Charts

ODL Object Definition Language

PCO Point of Control and Observation

Ret-RP Retailer Reference Point

RP Reference Point

SCTR System Conformance Test Report 

TTCN Tree and Tabular Combined Notation

TTCN/mp TTCN machine processable form

TTCN/gr TTCN graphical form



29

Annex A: The Object Definition Language ODL

The Object Definition Language (ODL [24]) defined by the TINA Consortium is a superset of the

Interface Definition Language (IDL) defined by the Object Management Group (OMG). It provides

means to specify a system structure and relation between objects. This is specified on type level, the so

called templates. Templates are used to define the types for interface instances, object instances, and for

object groups.

ODL enables the computational specification of ubiquitous TINA architectural concepts: interfaces,

objects, and object groups. Specifications of these individual concepts are combined to form the

(computational) specification of TINA systems. When enterprise, information, engineering and other

specifications are added, the initial steps in the TINA software development process are underway.

The ODL syntax is composed of five major parts: data types and constants, stream interface templates,

operational interface templates, object templates, and object group templates. Data type and constant

definitions can be made at any point in ODL specifications as long as names are defined before use. 

Interfaces can be operational (i.e. invocation of operations by a synchronous, discrete communication)

or stream-based (i.e. asynchronous continuous data flows). Operational interface templates are used to

specify procedures in ODL. Stream interface templates are introduced to specify continuous-bit-rate

data. 

A basic concept in ODL is that of an object instance, which might have multiple interface instances of

multiple interface templates. An object encapsulates its behavior and state, which realize the object

fuctionality. The access to and the visibility of the object functionality is realized in a controlled manner

via the objects’ interfaces. ODL contains no language features for the formal behavior description,

textual explanations are used instead.

Object instances are the basic unit of distribution in ODL and are represented by object templates. They

incorporate stream and operational interface templates. 

Objects might be grouped in order to describe the system structure in terms of object group templates.

Object group templates enable aggregation of object templates to increase the conceptual level at which

programs can be designed and increase the modularity of designs.



30

Annex B: Abstract Syntax Notation One ASN.1

The Abstract Syntax Notation One (ASN.1 [10]) has been defined by CCITT (nowadays ITU) for the

definition of the syntax of  information data in Open Systems Interconnection (OSI) Systems. The

ASN.1 notations can be applied whenever it is necessary to define the abstract syntax of information

without constraining in any way how the information is encoded for transmission. It is particularly, but

not exclusively, applicable to application layer protocols.

ASN.1 is concerned with preserving the meaning of the information transported in telecommunication

systems and, therefore, copes in addition to the data type definitions with the representation of

transmitted data, its conversion, encryption and decryption, and compression of data values. 

ASN.1 consists of two main parts:

• the description of structured data in a machine-independent way  with the abstract syntax notation

• the representation of structured data "on the wire" with the abstract transfer syntax

ASN.1 defines a number of simple and structured data types with optional and mandatory parts and

default values. It specifies a notation for referencing these types and for specifying values of these types.

A module concept is used to structure data specifications and to reuse existing definitions. 



31

Annex C: Message Sequence Charts MSC

Message Sequence Charts (MSC [12]) by ITU is a specification technique to describe executions of

concurrent and distributed systems. It is used throughout the engineering process.

MSCs describe patterns of interaction between a number of independent components of a system. The

basic model of interaction is that of asynchronous communication by means of message passing between

the components, which are called instances. An MSC describes the order in which interactions and other

events take place. MSC diagrams are used to graphically present the pattern of interaction.

MSC supports various constructs to represent the pattern of interaction. Core constructs are instance,

message, timer, condition, and inline expression. 

Instances of an MSC represent interacting components of a system.  The message flow is presented by

horizontal arrows between the interacting instances. The head of the message arrow denotes the message

receiving and the opposite end the message sending. The message name is assigned to the arrow. In

addition to the message name, message parameters in parentheses may be assigned to a message.

Along each instance axis a total ordering of the described communication events is assumed. Events of

different instances are in general unordered. The only order for events of different instances is implied

via the interaction with messages: a message must be sent before it is consumed.

A condition describes a state referring to a set of instances of the MSC. Conditions can be used to

emphasize important states within an MSC. Conditions are represented by hexagons covering the

instances involved.

Composition of event structures may be defined inside of an MSC by means of inline expressions. The

operators of inline expressions refer e.g. to alternative (alt), iteration (loop), and optional (opt) regions.

In the graphical form of an inline expression, a frame encloses the operands and the dashed lines denote

operand separators. The operator keywords are placed in the left upper corner in the graphical

representation of the inline expression. 



32

Annex D: Tree and Tabular Combined Notation TTCN

The Tree and Tabular Combined Notation (TTCN [8]) by ITU is an informal test notation that supports

specification of abstract test suites. The T for tabular refers to the use of tables (proformas) for  the

graphical representation of test suites. The T for tree refers to the hierarchical organization of a test suite.

TTCN has been defined as part of the Conformance Testing Methodology and Framework for testing the

conformance of OSI protocols. It has been proven that TTCN is applicable in a wider scope such as for

ODP, TINA and CORBA systems.  

An abstract test suite (ATS) is composed of four parts: an overview part, a declarations part, a constraints

part and a dynamic part. The overview part provides the test suite structure at a glance. It includes indexes

for test groups, test cases, steps, and defaults. It covers information needed for the general presentation

and understanding of the test suite

The declarations part contains declaration of simple and structured types, constants, variables, test suite

operations, PCO (point of control and observation) types, PCOs, timers, PDU (protocol data unit) types

and ASP (abstract service primitive) types. 

In the constraints part, values and value ranges are specified for PDUs and ASPs that are used to describe

test events. ASN.1 is used for both type specification and value specification. 

The dynamic part deals with the specification of dynamic behavior in the form of abstract test cases. Each

test case addresses a particular test purpose, i.e. a single conformance requirement.  A test purpose is a

prose description of a well defined objective of testing, focusing on a single conformance requirement

as specified in the appropriate system specification. An abstract test case is a complete and independent

specification of those test actions required to achieve a specific test purpose. Test cases can be organized

in nested test groups. In addition, from subdivisions of a test case that can be reused by other test cases,

a so-called test step library can be built. This library may also have a nested structure.

The behavior specification consists of test events (e.g. send, receive, timeout, otherwise) and other

TTCN constructs (e.g. goto, repeat). The test events are organized in a tree form, with the levels

represented by indentations.

In some cases, testing is only possible when the system is separated in concurrent components.

Concurrent TTCN allows the specification of multi-party testing provided by concurrent executed test

components. Multi-party testing is applied especially for systems realized by decentralized or distributed

components. 



33

Annex E: SCTR Template

System Conformance Test Report for 

                                                                                                         

1. Identification Summary

1.1 System Conformance Test Report

STCR NUMBER:                                                                                                          

STCR DATE:                                                                                                          

TEST LABORATORY MANAGER:

                                                                                                         

SIGNATURE:                                                                                                          

1.2 Test Laboratory

                                                                                                         

                                                                                                         

                                                                                                         

1.3  Test Client

                                                                                                         

                                                                                                         

                                                                                                         

1.4 System Under Test

NAME:                                                                                                          

Version:                                                                                                          

Supplier:                                                                                                          



34

Dates of Testing:                                                                                                          

1.5 Nature of Conformance Testing

Conformance testing deals with both the capabilities and behaviour of an implementation. It is used to check an 
implementation against the conformance requirements in the relevant International Standards (IS) or the ITU-T 
Recommendations.

Note:

Conformance testing does neither include assessment of the performance nor of the robustness or reliability of an 
implementation. It gives not judgements either on the physical realization or on the internal protocols of the 
implementation.

The purpose of conformance testing is to increase the probability that different ATM implementations/systems 
will interwork reliable. However, the complexity of protocols make exhaustive testing impractical on both techni-
cal and economic reasons. Therefore, there is neither a guarantee that successfully tested systems conform to 
every aspect of the underlying specification(s) nor a guarantee that it will interoperate with every other system. 
But the successful passing of the tests gives stronger confidence that the tested implementation/system will 
behave standard conformant and will show a high degree of multi-vendor-interoperability.

1.6 Limits and Reservations

                                                                                                         

1.7 Record of Agreement

IUT                                                                                                          

ABSTRACT TEST METHOD                                                                                                          

ATS STANDARD/

RECOMMENDATION:                                                                                                          

1.8 Comments

                                                                                                         

                                                                                                         

                                                                                                         

                                                                                                         

                                                                                                         

                                                                                                         



35

2. System Report Summary

2.1 Protocol Layer Testing Summary for 

IMPLEMENTATION IDENTIFIER                                                                                                         

IUT DEFINITION REFERENCE                                                                                                         

SYSTEM STANDARD/

RECOMMENDATION:                                                                                                          

ICS:                                                                                                          

IXIT:                                                                                                          

FTCR NUMBERS and FTCR DATES:

                                                                                                         

ATS RECOMMENDATIONS:                                                                                                          

MEANS OF TESTING 

IDENTIFICATION:                                                                                                          

CONFORMANCE STATUS                                                                                                          

STATIC CONFORMANCE ERRORS?

                                                                                                         

DYNAMIC CONFORMANCE ERRORS?

                                                                                                         

TEST CASES RUN                                                                                                          

PASSED                                                                                                          

FAILED                                                                                                          

INCONCLUSIVE                                                                                                          

OBSERVATIONS (OPTIONAL)

                                                                                                         

                                                                                                         



36

Annex F:FCTR Template

Facet Conformance Test Report for 

                                                                                                         

1. Identification Summary

1.1 Protocol Conformance Test Report

FTCR NUMBER:                                                                                                         

FTCR DATE:                                                                                                         

CORRESPONDING SCTR NUMBER:

                                                                                                         

CORRESPONDING SCTR DATE:

                                                                                                         

TEST LABORATORY MANAGER:

                                                                                                        

SIGNATURE:

                                                                                                         

1.2 IUT

NAME:                                                                                                          

VERSION:                                                                                                          

SYSTEM STANDARD/RECOMMENDATION:

                                                                                                         



37

ICS:                                                                                                          

PREVIOUS FCTR(S):                                                                                                          

1.3 Testing Environment

IXIT:                                                                                                          

ATS STANDARD/RECOMMENDATION:

                                                                                                         

ABSTRACT TEST METHOD:                                                                                                          

MEANS OF TESTING IDENTIFICATION:

                                                                                                         

DATES OF TESTING:                                                                                                          

CONFORMANCE LOG REFERENCE:

                                                                                                         

RETENTION DATE FOR LOG REFERENCE:

                                                                                                         

1.4 Limits and Reservations

                                                                                                         

1.5 Comments

                                                                                                         

2. IUT Conformance Status

This IUT has been shown to be conforming/non-conforming the the specified protocol/recommendation.

3. Static Conformance Summary

The PICS for this IUT is consistent/not consistent with the static standard/recommendation.

4. Dynamic Conformance Summary

The test procedure did not/did reveal errors in the IUT.



38

5. Static Conformance Review Report

                                                                                                         

6. Test Campaign Report

7. Observations

                                                                                                         

No. ATS Reference Selected Run Description Verdict Observations

1. TestGroup1/
TestCase1

Verify that the IUT... (Ref. section 1.1)

2. TestGroup1/
TestCase2

Verify that the IUT... (Ref. section 1.2)


